1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
| import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as data import math import copy
class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() assert d_model % num_heads == 0 self.d_model = d_model self.num_heads = num_heads self.d_k = d_model // num_heads self.W_q = nn.Linear(d_model, d_model) self.W_k = nn.Linear(d_model, d_model) self.W_v = nn.Linear(d_model, d_model) self.W_o = nn.Linear(d_model, d_model) def scaled_dot_product_attention(self, Q, K, V, mask=None): attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k) if mask is not None: attn_scores = attn_scores.masked_fill(mask == 0, -1e9) attn_prob = torch.softmax(attn_scores, dim=-1) output = torch.matmul(attn_prob, V) return output def split_heads(self, x): batch_size, seq_length, d_model = x.size() return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2) def combine_heads(self, x): batch_size, num_heads, seq_length, d_k = x.size() return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model) def forward(self, Q, K, V, mask=None): Q = self.split_heads(self.W_q(Q)) K = self.split_heads(self.W_k(K)) V = self.split_heads(self.W_v(V)) attn_output = scaled_dot_product_attention(Q, K, V, mask) output = self.W_o(self.combine_heads(attn_output)) return output class PositionWiseFeedForward(nn.Module): def __init__(self, d_model, d_ff): super(PositionWiseFeedForward, self).__init__() self.fc1 = nn.Linear(d_model, d_ff) self.fc2 = nn.Linear(d_ff, d_model) self.relu = nn.ReLU() def forward(self, x): x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x class PositionalEncoding(nn.Module): def __init__(self, d_model, max_seq_length): super(PositionalEncoding, self).__init__() pe = torch.zeros(max_seq_length, d_model) position = torch.arrange(0, max_seq_length, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arrange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): return x + self.pe[:, :x.size(1)]
class EncoderLayer(nn.Module): def __init__(self, d_model, num_heads, d_ff, dropout): super(EncoderLayer, self).__init__() self.self_attn = MultiHeadAttention(d_model, num_heads) self.feed_forward = PositionWiseFeedForward(d_model, d_ff) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) def forward(self, x, mask): attn_output = self.self_attn(x, x, x, mask) x = self.norm1(x + self.dropout(attn_output)) ff_output = self.feed_forward(x) x = self.norm2(x + self.dropout(ff_output)) return x
class DecoderLayer(nn.Module): def __init__(self, d_model, num_heads, d_ff, dropout): super(DecoderLayer, self).__init__() self.self_attn = MultiHeadAttention(d_model, num_heads) self.cross_attn = MultiHeadAttention(d_model, num_heads) self.feed_forward = PositionWiseFeedForward(d_model, d_ff) self.norm1 = LayerNorm(d_model) self.norm2 = LayerNorm(d_model) self.norm3 = LayerNorm(d_model) self.dropout = nn.Dropout(dropout) def forward(self, x, encoder_output, src_mask, tgt_mask): attn_output = self.self_attn(x, x, x, tgt_mask) x = self.norm1(x + self.dropout(attn_output)) attn_output = self.cross_attn(x, encoder_output, encoder_output, src_mask) x = self.norm2(x + self.dropout(attn_output)) ff_output = self.feed_forward(x) x = self.norm3(x + self.dropout(ff_output)) return x
class Transformer(nn.Module): def __init__(self, src_vocab_size, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout): super(Transformer, self).__init__() self.encoder_embedding = nn.Embedding(src_vocab_size, d_model) self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model) self.position_encoding = PositionalEncoding(d_model, max_seq_length) self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)]) self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)]) self.fc = nn.Linear(d_model, tgt_vocab_size) self.dropout = nn.Dropout(dropout) def generate_mask(self, src, tgt): src_mask = (src != 0).unsqueeze(1).unsqueeze(2) tgt_mask = (tgt != 0).unsqueeze(1).unsqueeze(2) seq_length = tgt.size(1) nopeak_mask = (1 - torch.triu(torch.ones(1, seq_length, seq_length), diagonal=1)).bool() tgt_mask = tgt_mask & nopeak_mask return src_mask, tgt_mask def forward(self, src, tgt): src_mask, tgt_mask = self.generate_mask(src, tgt) src_embedded = self.dropout(self.position_encoding(self.encoder_embedding(src))) tgt_embedded = self.dropout(self.position_encoding(self.decoder_embedding(tgt))) encoder_output = src_embedded for encoder_layer in self.encoder_layers: encoder_output = encoder_layer(encoder_output, src_mask) decoder_output = tgt_embedded for decoder_layer in self.decoder_layers: decoder_output = decoder_layer(decoder_output, encoder_output, src_mask, tgt_mask) output = self.fc(decoder_output) return output
|